首页> 外文OA文献 >Joint Layout Estimation and Global Multi-View Registration for Indoor Reconstruction
【2h】

Joint Layout Estimation and Global Multi-View Registration for Indoor Reconstruction

机译:室内空间的联合布局估计和全局多视图注册   重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel method to jointly solve scene layoutestimation and global registration problems for accurate indoor 3Dreconstruction. Given a sequence of range data, we first build a set of scenefragments using KinectFusion and register them through pose graph optimization.Afterwards, we alternate between layout estimation and layout-based globalregistration processes in iterative fashion to complement each other. Weextract the scene layout through hierarchical agglomerative clustering andenergy-based multi-model fitting in consideration of noisy measurements. Havingthe estimated scene layout in one hand, we register all the range data throughthe global iterative closest point algorithm where the positions of 3D pointsthat belong to the layout such as walls and a ceiling are constrained to beclose to the layout. We experimentally verify the proposed method with thepublicly available synthetic and real-world datasets in both quantitative andqualitative ways.
机译:在本文中,我们提出了一种新颖的方法来共同解决场景布局估计和全局配准问题,以实现准确的室内3D重建。给定一系列距离数据,我们首先使用KinectFusion构建一组场景片段,然后通过位姿图优化对其进行注册。然后,我们以迭代的方式在布局估计和基于布局的全局注册过程之间进行交替,以相互补充。考虑到噪声测量,我们通过分层的聚类聚类和基于能量的多模型拟合来提取场景布局。一方面拥有估计的场景布局,我们通过全局迭代最近点算法注册所有范围数据,其中属于布局的3D点(如墙壁和天花板)的位置被约束为与布局接近。我们通过定量和定性两种方法,利用公开可用的合成数据集和实际数据集,通过实验验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号